Module	Content	Duratio	on/hours	Teacher	Compul-	Prerequisites	Number	Conditions for
		Lectures	Practice/ Self- study		sory/ Compulsor y Optional Subject		of credits	passing
History of glass production, properties of glass and glass- forming melts	 Content: brief introduction to the history of glass production, glass structure, crystallization, and phase separation, properties of glass and glass-forming melts: viscosity, density, surface tension, thermal properties, mechanical properties, electrical properties, optical properties, chemical resistance, influence of composition on glass properties. Learning Outcomes: Graduate: Has theoretical knowledge in the history of glass production. Understands the structure of glass. Knows the most important properties of glass and glass-forming melts. 	12	0/40	Ing. Jozef Kraxner, PhD., Dr. Arish Dasan, Dr. Akansha Mehta, Mokhtar Mahmoud, MSc., Dr. Diana Carolina Lago	Compulsory	Fundamentals of the technology of inorganic materials	2	Passing the final knowledge test (100 %, achieved min. score 75%)
Glass production technology	Content: Theoretical part: • basic raw materials for glass production, types of glass, special glasses, • melting and shaping, • furnace technology, • refractory materials, • defects in glass, • additive manufacturing-3D printing. Practical part: • calculation and preparation of a glass batch, • melting of glass in laboratory conditions, • preparation of glass microspheres, • preparation of 3D glass structures using additive manufacturing technology, • glass surface treatment by ion exchange. Learning Outcomes: Graduate: • Has theoretical and practical knowledge on glass production technology. • Recognizes the main types of industrially produced and special types of glass.	15	20/30	Ing. Jozef Kraxner, PhD., Dr. Arish Dasan, Dr. Akansha Mehta, Mokhtar Mahmoud, MSc., Dr. Diana Carolina Lago	Compulsory Optional	History of glass production, properties of glass and glass-forming melt	3	Passing the final knowledge test (60 %, achieved min. score 75%) Protocol from practical exercise (40 %)

	 Gains practical skills in the preparation of glass by melting, and preparation of glass microspheres by flame synthesis. Masters the fundamentals of preparation of 3D structures using additive manufacturing technologies. Masters the fundamentals of glass surface treatment by ion exchange in the laboratory. 							
Sintering	 Content: Types of sintering, driving force of sintering, diffusion, defects and chemistry of defects. Sintering mechanisms I: solid phase sintering, liquid phase sintering, grain growth. Sintering mechanisms II: Viscous flow sintering and crystallization. Assisted sintering: Pressure, Electric field, Cold sintering. Practical application of sintering techniques (PBL). Learning Outcomes: Graduate: Understands the principles and can choose suitable sintering method. Understands the mechanisms of sintering and the influence of sintering conditions. Can analyze the results of a simple sintering experiment. 	8	24/30	Dr. Ali Talimian, Dr. Monika Michálková	Compulsory Optional	Physical Chemistry; Thermal analysis I; Fundamentals of the technology of inorganic materials	3	Oral exam (40 %) PBL protocol (60%)
Excursion	 Content: Completing an excursion in a company operating in the field of glass production and processing, e.g.: RONA a.s., Lednické Rovne. Learning Outcomes: Graduate: Expands his/her theoretical knowledge with a practical demonstration of glass production and processing in a glass company. 	0	8/0	Ing. Jozef Kraxner, PhD., Dr. Arish Dasan, Dr. Akansha Mehta, Mokhtar Mahmoud, MSc., Dr. Diana Carolina Lago	Compulsory Optional	Not necessary for this module	1	Attendance (100 %)
Nanomaterials for anti-corrosion coatings	 Content: methods and ways of corrosion protection, highly effective coatings, hybrid nanocomposites: optimization to achieve a highly crosslinked structure, Sol-gel coatings, overview of multifunctional coatings. Learning Outcomes: Graduate: Is able to interpret basic electrochemical data. Is competent to compare the effectiveness of various anticorrosion coatings. 	4	6/15	lng. Milan Parchovianský, PhD.	Compulsory Optional	Fundamentals of colloidal chemistry	1	Presentation of results from practical exercises and answering the examiner's questions (60 %) Preparation of a protocol from a laboratory exercise (40 %)

Nanomaterials for biomedical applications	 Possesses basic knowledge of hybrid nanocomposites, their structure and methods of their synthesis. Possesses basic knowledge on intelligent multifunctional coatings. Content: Part 1. Introduction to nanomaterials and nanostructures Top-down and bottom-up approaches Classification of nanomaterials Dimensional classification of nanomaterials Types of nanomaterials based on their structure Types of nanomaterials based on their structure Types of nanomaterials based on their composition Part 2. Synthesis of nanomaterials (Methods - brief description) Sol-gel (explained in detail in another course) Microemulsion Hydrothermal and Solvothermal synthesis Electrospinning Others Part 3. Characterization of nanomaterials (brief description) Transmission electron microscopy (TEM) Scanning electron microscopy (SEM) Thermogravimetric analysis (TGA) Raman and infrared (IR) spectroscopy X-ray diffraction (XRD) Nuclear magnetic resonance (NMR) Zeta potential Contact angle Part 4. Biological properties and characterization of nanomaterials. Bioactivity, biocompatibility, degradability Bioactivity, biocompatibility, degradability Bioactivity, biocompatibility, degradability Paioactivity and sensitivity Part 4. Biological applications of nanomaterials Cell type specificity and sensitivity Paioactivit and antimicrobi	6	30/30	Dr. Zulema Vargas Osorio, Dr. Germán A. Clavijo Mejia	Compulsory Optional	Fundamentals of the technology of inorganic materials	3	Participation in lectures and during the experimental work. Presentation of results from practical exercises and answering the examiner's questions (60 %) Preparation of a protocol from a laboratory exercise (40 %)

	 Gains theoretical knowledge about the different synthetic routes and characterization techniques for the study of nanomaterials. Gains theoretical knowledge about the biological assessment of nanomaterials. Gains theoretical knowledge about the biological applications of nanomaterials. Can independently perform the synthesis of nanomaterials for a determined application. 							
Nanomaterials for optical applications	 Content: Basic concepts: Wave optics and wave mechanics: Schrödinger and Helmholtz equations. Overview of quantum mechanics: interactions of light and matter. Time-dependent fault theory. Confined light and quantum electrodynamics. Basic concepts of nonlinear surface optics. Nonlinear optical spectroscopy: surface conditions of semiconductors, metal quantum wells (quantum wells). Optical properties of low-dimensional semiconductors. Applications: Planar photonic crystals and photonic crystal optical fibers. Learning Outcomes: Graduate: Gains the ability to interpret basic concepts about the optical properties of nanomaterials. Has a basic knowledge of nonlinear optics, quantum constraints and its effect on optical properties. Has a basic knowledge of semiconductor and photonic crystals. 	6	6/30	doc. Dr. José Joaquín Velázquez García	Compulsory Optional	Fundamentals of colloidal chemistry	2	Presentation of results from practical exercises and answering the examiner's questions (60 %) Preparation of a protocol from a laboratory exercise (40 %)
Sol-gel and Surface modification of nanoparticles	Content: Part 1: Sol-gel Sol-gel chemistry Precursors for sol-gel Definition of sol Definition of gel Gel point definition Sol-gel reactions Sol-gel mechanism Sol-gel procedure stages Sol-gel approaches Parameters that affect the sol-gel mechanism Advantages of sol-gel Limitations and disadvantages of sol-gel Part 2: Surface modification Introduction	6	30/30	Dr. Zulema Vargas Osorio, Dr. Si Chen	Compulsory Optional	Physical Chemistry and Types of chemical reactions and chemistry of selected chemical compounds	3	Participation in lectures and during the experimental work. Presentation of results from practical exercises and answering the examiner's questions (60 %) Preparation of a protocol from a laboratory exercise (40 %)

			1	1	1		1	I
	 ✓ Covalent methods 							
	✓ Non-covalent adsorption							
	✓ Others							
	✓ Secondary modification							
	Part 3: Silica-based mesoporous organic-inorganic hybrid							
	materials							
	✓ Surfactants							
	 Surfactants classification 							
	✓ Micelles and CMC							
	✓ Micelles formation							
	 Parameters that affect micelles formation 							
	✓ Morphological aspects of amphiphile assembly							
	 ✓ Surfactants as structure-directing agents (SDA) 							
	 ✓ Advantages of solvent extraction for surfactant removal 							
	 ✓ Organic-inorganic interactions: surfactant-precursor 							
	species							
	 Organically Functionalized Mesoporous Silica Phases 							
	 Advantages of functionalization 							
	 Postsynthetic Functionalization ✓ Postsynthetic Functionalization of Silicas ("Grafting") 							
	 ✓ Co-condensation (Direct synthesis) ✓ Co-condensation (Direct synthesis) 							
	✓ Co-condensation (Direct synthesis)_Disadvantages							
	 Periodic Mesoporous Organosilicas (PMOs) 							
	Learning Outcomes:							
	Graduate:							
	Gains theoretical knowledge about sol-gel and surface							
	modification of nanoparticles.							
	 Can independently perform the synthesis of nanoparticles 							
	using sol-gel.							
	 Can organically modify the surface of nanoparticles to 							
	tailor their properties.							
	Content:							
	 analytical methods used to determine the chemical 							
Int	composition of materials,							
rod	 criteria for selection of the analytical method, 							
luct	 dictionary of Analytical Chemistry, 							Attendence of
ion	 steps included in the measurement process, 			Ing. Dagmar				Attendance at
đ	 steps involved in the evaluation of analytical data, 			Galusková,		Atom structure and		lectures,
ana	 importance of sampling, 	4	0/40	PhD.,	Compulsory	chemical bond	2	passing written/or
alyt	 design and implementation of a sampling plan, 			Ing. Hana		theory		oral exam
ଘ	• .			Kaňková, PhD.		,		(100 %, achieved
a a	 dissolution and decomposition techniques. 							min.score 75%)
Introduction to analytical methods	Learning Outcomes:							
spc	Graduate:							
	Gains theoretical knowledge and confidence to design							
	his/her own criteria for selecting an appropriate analytical							
	momer own ontend for selecting an appropriate analytical		l	l	1	1		

	method and to solve common scientific analytical problems.Gains theoretical knowledge and confidence in designing a sampling plan and sample preparation procedure.							
Methods of chemical analysis: ICP OES	 Content: Principles of liquid sample dosing in ICP spectrometry. Sample requirements and preparation for the measurement. ICP OES method used in quantitative analysis of materials Learning Outcomes: Graduate: Gains theoretical knowledge of ICP techniques and an overview of their possibilities in quantitative chemical analysis of materials. Gains basic practical skills in sampling and their preparation, processing and evaluation of data using the instrumental technique ICP OES. 	2	8/40	Ing. Dagmar Galusková, PhD., Ing. Hana Kaňková, PhD., Ing. Lenka Buňová, PhD.	Compulsory Optional	Atom structure and chemical bond theory, Introduction to analytical methods	2	Attendance at the practical lectures, passing written/ or oral exam (60 %, achieved min. score 75%) Protocol from practical exercise - (40 %)
Methods of chemical analysis: X-ray flourescence	 Content: introduction: application and limitations of XRF, XRF principles: sample types for XRF: advantages, limitations, preferences, sample preparation and chemical analysis of the selected sample by XRF. Learning Outcomes: Graduate: Masters theoretical and basic practical knowledge of XRF instrumentation and has an overview of the possibilities of using XRF in the characterization of materials. Gains practical and basic skills in preparation of a sample, understands the measurement. Can process and evaluate the measured data. 	2	6/30	Ing. Hana Kaňková, PhD.	Compulsory Optional	Atom structure and chemical bond theory; Introduction to analytical methods	2	Attendance at practical lectures, passing the final written exam (60 %, achieved min. score 75%) Protocol from practical exercise- (40 %)
Electron microscopy	 Content: introduction and overview of the use of electron microscopy methods (SEM), electron beam and sample interactions, image creation and resolution, analysis and detection of X-rays, limitations of chemical analysis using SEM / EDS / WDS. Learning Outcomes: Graduate: Gains theoretical and basic practical knowledge of SEM instrumentation. Gains an overview of the possibilities of using SEM in the characterization of materials. 	4	8/15	Mgr. Peter Švančárek, PhD.	Compulsory Optional	Atom structure and chemical bond theory; Introduction to analytical methods	1	Compulsory attendance at lectures, passing the final knowledge test (60 %, achieved min. score 75%) Protocol from practical exercise - sample preparation and analysis (40 %)

	Has basic practical skills in preparation of a sample, making measurements and processing the data.							
X-ray powder diffraction	 Content: principles of X-ray powder diffraction, interaction of X-rays with matter, diffraction and scattering, X-ray experiment design (Bragg-Brentano, SAXS, WAXS), phase composition identification, texture analysis and degree of crystallinity, sample preparation, sample measurement, data evaluation. Learning Outcomes: Graduate: understands the basic principles and theory of powder X-ray diffraction, understands the role of optics in the path of the primary and diffracted beam, can independently prepare a sample for measurement, independently controls the basic functions of the X-ray powder diffractometer, can perform independently a measurement at room temperature, can evaluate data (phase identification and determination of qualitative and semi-quantitative phase composition of an unknown sample). 	2	8/15	Mgr. Michal Žitňan, PhD., prof. Ing. Dušan Galusek, DrSc.	Compulsory Optional	Atom structure and chemical bond theory; Introduction to analytical methods	1	Compulsory attendance at lectures, passing the final knowledge test (60 %, achieved min. score 75%) Protocol from practical exercise - sample preparation and analysis (40 %)
Thermal analysis I	 Content: principles and methods of thermal analysis (DTA, DSC, TG, TMA), thermal phenomena, instrumentation, familiarization with instrumentation, health and safety, basic requirements for measured samples in terms of accuracy of analysis, the importance and support of the accuracy of measurements using XRD, PSA, HT XRD, SEM a SEM EDX analysis, crushing, sieving, washing of samples, drying, weighing, basic requirements for measurement settings to obtain relevant data, work with software for measuring and evaluating data, defining programs for calibrations, corrections and simple measurements of samples, 	6	19/20	Ing. Anna Prnová, PhD., Ing. Monika Michálková, PhD., Ing. Beata Pecušová, PhD., doc. Ing. Mária Chromčíková, PhD .	Compulsory Optional	Physical Chemistry; Fundamentals of the technology of inorganic materials	2	Compulsory participation in lectures / seminars / laboratory exercises, Final test (weight 60%, achieved min. score 75%) Laboratory exercise protocol (weight 40%)

	 work with software for measuring and evaluating data, defining programs for basic analysis of model glasses and amorphous solids using DTA, DSC, TMA and TG, data evaluation and interpretation, evaluation of TMA and TG curves, weight loss, evaluation of DSC and DTA curves (determination of basic parameters describing thermal effects), processing of measured data for publication. Learning Outcomes: 							
	 Graduate: Gains basic information and skills in the field of thermal analysis of glasses and amorphous materials. Can plan analysis, evaluate measured data. 							
Thermal analysis II.	 Content: Methods of obtaining relevant data for the study of crystallization kinetics. Control and data processing for model calculations. Calculations of kinetic data for model glasses, work with the software Kinpar (Netzsch). Learning Outcomes: Graduate: Gains knowledge and skills in planning analyzes and evaluating measured data for the study of crystallization kinetics of glass. Knows the criteria for selecting a suitable method for calculating the kinetic parameters of crystallization. Can correctly determine the kinetic parameter of crystallization such as apparent activation energy, frequency factor, Avrami coefficient. Masters the JMAK method for assessing the crystallization behavior of glasses. 	2	8/30	Ing. Anna Prnová, PhD., doc. Ing. Mária Chromčíková, PhD.	Compulsory Optional	Thermal analysis I; Physical Chemistry; Fundamentals of the technology of inorganic materials	2	Compulsory participation in lectures / seminars / laboratory exercises, Final test (weight 60%, achieved min. score 75%) Laboratory exercise protocol (weight 40%)
Thermodynamics of electrochemical systems	 Content: electrolysis and Faraday's law, thermodynamics of galvanic cells, Nernst's equation, basics of electrochemical corrosion. Learning Outcomes: Graduate: Can identify cathodic and anodic reactions and calculate a mass transfer. Can identify galvanic pair and predict the extent of corrosion. Has a basic knowledge of thermodynamic equilibrium (electromotive force of the cell). Has practical knowledge of electrode polarization and differential air corrosion. 	8	5/15	ТВА	Compulsory Optional	Physical Chemistry; Fundamentals of the technology of inorganic materials	1	Laboratory exercise protocol (weight 100 %)

	Content:							I
Fundamentals of mathematical statistics	 basic types of data and their properties, verification of data distribution and normality, basic descriptive data statistics, null hypothesis, level of significance, level of probability. Learning Outcomes: Graduate: Can independently assess the nature of the data during the design of the experiment. Knows the methods of basic statistical data processing. Has practical skills in verifying the nature of the measured data. Has basic skills in using online statistical applets. Has a basic knowledge of the interpretation of measured data. 	12	12/30	RNDr. Vladimír Meluš, PhD. MPH	Compulsory	Not necessary for this module	2	Exam - online e- test (weight 100 %)
Mathematical statistics: practical application	 Content: parametric and non-parametric tests, categorial data, contingency tables, regression and correlation, confidence intervals, interpretation of results. Learning Outcomes: Graduate: Can independently select and use a specific statistical tests. Can correctly process graphic attachments (tables, box graphs). Has advanced skills in using online statistical applications. Can independently interpret the data, taking into account the nature of the phenomenon under study. 	12	12/30	RNDr. Vladimír Meluš, PhD. MPH	Compulsory Optional	Fundamentals of mathematical statistics	2	Exam - online e- test (weight 100 %)
n Mathematical statistics: case studies	 Content: design of experiment in terms of requirements of a statistical test, multidimensional statistical methods, the difference between mathematical-statistical significance and significance in terms of the actual benefit of the tested parameter. Learning Outcomes: Graduate: Can independently apply statistical methods in solving scientific problems and specific tasks in solving his dissertation. Can independently interpret the results of experimental work in a broader context. Can assess the adequacy of statistical analysis in other scientific published works and compare them with his/her own results. 	12	12/30	RNDr. Vladimír Meluš, PhD. MPH	Compulsory Optional	Fundamentals of mathematical statistics	2	Exam - online e- test (weight 100 %)

Fundamentals of computational chemistry	 Content: introduction to computer simulations and their application in chemistry, bases of atomic functions in MO-LCAO, introduction to the method of density functional theory (DFT), quantum - chemical simulations of the properties of atoms and molecules. Learning Outcomes: Graduate: knows how to use quantum - chemical simulations in practice, acquires basic knowledge for working with quantum - chemical programs, has the basic knowledge necessary for creating utilities (scripts). 	8	16/30	Dr.h.c. prof. Ing. Marek Liška, DrSc., doc. Ing. Róbert Klement, PhD., doc. Amirhossein Pakseresht, PhD.	Compulsory Optional	Physical Chemistry	2	Test (weight 100%, achieved min.score 75%)
Fundamentals of colloidal chemistry	 Content: Basic definitions and terms from colloidal chemistry and surface chemistry (colloid classification, intermolecular forces, interaction forces in colloidal systems, phase transitions and phase structure). Liquid-gas and liquid-liquid interfaces and monolayers. Classification and significance of mono- and polylayers. Thermodynamics of adsorption at gas-solid phase and liquid-solid phase interfaces. Adsorption in several layers, in porous solids, on the surface of crystals, Langmuir-Blogett film. General characteristics of colloidal systems. Surface of very small particles. Charged surfaces. Coagulation and flocculation kinetics. Emulsions: preparation, emulsification kinetics, stability, concentrated emulsions, multicomponent emulsions. Suspensions: types, stabilization, effect of additives. Aerosols: liquid aerosols by condensation, solid aerosols, decomposition of aerosols. Gel casting: principles, polymerization of monomers, factors influencing polymerization. Simulation of colloidal systems in thermodynamic equilibrium: general characteristics of simulation methods, MonteCarlo method, molecular dynamics, Brown molecular dynamics. Learning Outcomes: Graduate: has basic knowledge in the field of colloidal chemistry, 	12	8/30	doc.Dr. José Joaquín Velázquez García, doc. Ing. Róbert Klement, PhD., Dr. Ali Najafzadeh,	Compulsory Optional	Physical Chemistry	2	Active participation in lectures. • Test (Weight 60%, achieved min. score 75%) • Elaboration of a thematic essay with a search of journal literature in the range of 15-20 pages on a topic related to the topic of the dissertation thesis, including a discussion of the results obtained in the exercise (weight 40%)

Collodial systems: cheracterization and utilization	 has the ability to independently perform synthesis of materials in different types of colloidal systems: emulsions, aerosols and gels, can independently assess the adequacy of simulation methods for the investigated colloidal systems. Content: rheological properties of dispersion systems - viscosity, non-Newtonian fluids, optical properties of dispersion systems - light scattering: Rayleigh theory, Mie's theory, electrical properties of dispersion systems - electrical bilayer, electrokinetic phenomena, electrocapillary phenomena. determination of ζ-potential. viscoelectric effect, other characterization techniques: microscopy, spectroscopy, calorimetry, technological applications of solubilization phenomena in colloidal systems, applications of dispersion systems, analytical applications of colloidal systems, sensors. Learning Outcomes: Graduate: Has a basic knowledge of techniques for characterizing colloidal systems. Can work independently in the laboratory and can independently interpret the results of experimental work in the broader context of colloidal systems. 	8	10/30	doc. Dr. José Joaquín Velázquez García, doc. Ing. Róbert Klement, PhD., Dr. Ali Najafzadeh, Dr. Ali Talimian	Compulsory Optional	Physical Chemistry Fundamentals of colloidal chemistry	2	Active participation in lectures. • Test (Weight 60%, achieved min. score 75%) • Elaboration of a thematic essay with a search of journal literature in the range of 15-20 pages on a topic related to the topic of the dissertation thesis, including a discussion of the results obtained in the exercise (weight 40%)
	 Can select appropriate characterization techniques and use them in the characterization of colloidal systems. Can compare and develop colloidal systems for specific applications. 							
Theoretical principles of molecular spectroscopy	 Content: basic terms and definitions, theoretical principles of molecular spectroscopy and instrumentation. Learning Outcomes: Graduate: Masters the basic concepts and theoretical principles of molecular spectroscopy methods. Understands the principles and understands the way electromagnetic radiation interacts with matter. 	15	0/40	doc. Ing. Róbert Klement, PhD.,	Compulsory	Physical Chemistry	2	 Compulsory participation in lectures. Test (weight 60%, achieved score min. 75%) Essay on selected topic related to the dissertation thesis (weight 40%)

UV-vis-NIR scpectroscopy	 Content: Theoretical part: basic terms and definitions, units, lambert-Beer law and its application, KM function, Tauc graph, electron transitions in organic molecules, RE and TM ions, the probability of spectral transitions and the relationship to the intensity of absorption, selection rules, Frank-Condon principle, influence of solvent / matrix on the displacement and intensity of absorption bands, instrumentation (transmittance and diffuse reflection), basic calculations. Practical part: Instrumentation and acquisition of spectra (solutions, solid samples) in transmission and diffusion reflectance. Spectrophotometry- spectrophotometric measurement of chemical reaction kinetics. Experimental data processing and interpretation. Learning Outcomes: Graduate: masters the basic principles of UV-vis-NIR spectrometry, masters the appropriate experimental technique, can independently measure, evaluate and interpret results. 	10	15/30	doc. Ing. Róbert Klement, PhD., Mgr. Michal Žitňan, PhD.	Compulsory Optional	Theoretical principles of molecular spectroscopy	2	 Compulsory participation in lectures. Test (weight 80%, achieved min. score 75%) Practical demonstration of the use of the method (weight 20%)
Photoluminescence spectroscopy	 Content: Theoretical part: basic terms and definitions, units, theoretical foundations of fluorescence spectroscopy (Jablonsky diagram and photochemical / photophysical processes in matter, PL transitions in TM and RE ions, selection rules, luminescence quenching mechanisms, lifetime, quantum yield), instrumentation (steady state and time-resolved PL spectroscopy). Practical part: instrumentation and acquisition of spectra (solutions, solid samples) - excitation and emission spectra, instrumentation and measurement of quenching time (solutions, solid samples), quantum yield measurement, experimental processing and interpretation of data. Learning Outcomes: Masters the basic principles of photoluminescence spectroscopy. Masters the appropriate experimental technique. 	10	20/40	doc. Ing. Róbert Klement, PhD., Mgr. Michal Žitňan, PhD.	Compulsory Optional	Theoretical principles of molecular spectroscopy	3	Compulsory participation in lectures. • Test (weight 80%, achieved min. score 75%) • Practical demonstration of the use of the method (weight 20%)

	Can independently measure, evaluate and interpret results							
Infrared and Raman spectroscopy	 Content: Teoretical part: basic terms and definitions, units, theoretical foundations of vibrational spectroscopy (rotational, vibrational and vibrational-rotational spectra), instrumentation (IR and Raman spectroscopy), Practical part: IR spectrum measurement (various techniques, e.g.KBr, ATR), measurement of Raman spectra, experimental data processing and interpretation. Learning Outcomes: Graduate: Masters the basic principles of infrared and Raman spectroscopy. Masters the appropriate experimental techniques. Can independently measure, evaluate and interpret results. 	10	10/30	Dr.h.c. prof. Ing. Marek Liška, DrSc., Ing. Branislav Hruška, PhD., doc. Dr. José Joaquín Velázquez García, doc. Amirhossein Pakseresht, PhD.	Compulsory Optional	Theoretical principles of molecular spectroscopy	2	• Consultations and test (weight 50%, achieved min. score 30%) Seminar paper (weight 20%)• Practical demonstration of the use of the method (weight 30%)
Solid phase NMR spectroscopy	 Content: basic terms and definitions, units, theoretical foundations of NMR spectroscopy and its applicability in materials research: chemical shift, spectral line / band and its width, spectrum vs. structural motives, examples of NMR spectra of glasses and polycrystalline materials, data processing. Learning Outcomes: Graduate: masters the basic principles of NMR spectroscopy, knows the scope of application of the method and can apply it to solve tasks related to the topic of his dissertation thesis. 	10	0/15	ТВА	Compulsory Optional	Theoretical principles of molecular spectroscopy	1	 Active participation in lectures. Test (weight 100%, achieved min. score 75%)
XPS: X-ray phosphoelectron spectroscopy	 Content: theoretical foundations of XPS and instrumentation, sample preparation, possibilities and limits of the technique in advanced materials research. Learning Outcomes: Graduate: masters the basic principles of XPS, knows the scope of application of the method and can apply it to solve tasks related to the topic of his dissertation. 	10	0/15	Dr. Kamalan Kirubaharan, Dr. Ashokraja Chandrasekar, Dr. Omid Sharifahmadian	Compulsory Optional	Theoretical principles of molecular spectroscopy	1	 Active participation in lectures. Test (weight 100%, achieved min. score 75%)